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Abstract—An approximation to the nonlinear theory of the two component Bénard problem, taking

into account thermal diffusion, shows that multiple stable steady states are possible. The stability of each

steady state is investigated. The nonlinear equations are then integrated numerically. An hysteresis loop
in the Rayleigh number—Nusselt number plane is observed.

NOMENCLATURE

A,

B,

C, Fourier coefficients;

D,

E,

D, isothermal diffusion coefficient;
D, thermal diffusion coefficient;

d, depth of the liquid layer;

g, acceleration due to gravity;

N. mass fraction of component i;

N}, initial mass fraction of component i;
Nusselt number;

n, perturbation of N;

Pr, Prandt] number;

Ra, Rayleigh number;

Rayleigh number for the concentration field;
r, wavenumber in the horizontal direction;
Se, Schmidt number;

&, Soret number;

T, temperature;

t, time;

Xi space coordinate.

Greek symbols

a, thermal expansion coefficient;
7, p~(6p/ON)r;

K, thermal diffusivity;

v, kinematic viscosity;

0, density;

3, temperature perturbation;
v, stream function;

¢, vorticity.

1. INTRODUCTION

THIS paper considers the problem of a two fluid mixture
confined between slippery horizontal walls which are
heated from below. The system is initially homogeneous
in composition, but, owing to the imposed temperature
gradient, a mass fraction distribution is established in
the liquid layer; this is the so-called Soret effect.
Several theoretical papers are devoted to the linear
stability analysis [ 1-9]. The aim of the linear stability
analysis, is to give the variation of the critical Rayleigh

number as a function of a parameter, describing the
influence of thermal diffusion. This parameter is calied
the Soret number. The main result is that for negative
Soret numbers (i.e. when the denser component
migrates towards the hot plate, here the lower
boundary), the critical Rayleigh number increases: this
is a stabilizing effect. A destabilizing effect is observed
for positive Soret numbers when the denser component
migrates towards the upper cold boundary. It was also
found that under certain circumstances, the principle
of exchange of stabilities was violated and that in-
stability arises as oscillations of increasing amplitude
(overstability).

Several papers were also devoted to an experimental
investigation of the same problem [3,4,8,10-15]. In
most of these papers, Schmidt—Milverton plots [16] are
presented for an initially homogeneous two component
system. Anamalous heating curves for negative Soret
numbers are obtained showing a negative slope in a
certain region (AT decreases when the heating power
increases).

The situation is represented in Fig. 1. The main
subject of this paper is to explain finite amplitude
convection below the critical temperature gradient.
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Conduction
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F1G. 1. Schmidt-Milverton plots for a
two component system with negative
thermal diffusion factor.
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Referring to Fig. 1, if the Rayleigh number (or AT) is
increased beyond its critical value, there is a sudden
jump in the Nusselt number, indicated by arrow (a).
If the Rayleigh number is now decreased from its
maximum value, convection states extend below the
critical AT. At a critical temperature gradient called
AT;,, there is a jump back to the conduction regime
(Nu = 1). This hysteresis loop can only be explained in
the framework of a nonlinear theory. In order to obtain
approximate solutions to the nonlinear equations with
free boundary conditions, a truncated Fourier develop-
ment is used. This method is described in an earlier
work by Veronis [17, 18] and by Foster [ 19] on Bénard
type problems.

2. THE NONLINEAR EQUATIONS

For an incompressible fluid, the conservation equa-
tions are

LIPS P
¢=g%l (3
2
with
g _ % o

ax,y) ox'dy oy ox
In these equations, ¥ is the stream function, 8 and n

respectively the contribution of the convective state to
the temperature field 7 and the mass fraction distribu-
tion N. Thus

T(x,z,t) = T(2)+3(x,2,1)

N(x,z,t) = N(z)+n(x, z,t) (5)

Y(x,z,6) = 0+¥(x,2,1)
with

T(z)=1-z and N(2)=1+L(z—3).

All the variables are expressed in a dimensionless form.

The notation is that adopted in the papers by Platten
and Legros (e.g. 6)

Pr = Prandtl number = v/k
S¢ = Schmidt number = v/D

(D : isothermal diffusion coefficient)
Ra = Rayleigh number = gaATd>/xv
Ryy: thermal diffusion Rayleigh number

= gyN¥d*/xv
. 1<3p)
’ P\ONy Jr

& : the Soret number = (D'/D). AT
(D': thermal diffusion coefficient),

J. K. PLATTEN and G. CHAVEPEYER

3. AN APPROXIMATE SOLUTION

Once convection has set in, the mean temperature

and concentration field are distorted by the convective

motions. Following Veronis [ 17, 18] the minimal repre-

sentation which takes account of the finite amplitude
motion is

Yix,z,t) = Alt)sinnrx.sinnz 6)

3(x,z,t) = B(t)cosnrx.sinnz+ C(t)sin2nz  (7)

n(x,z,t) = D(t)cosnrx .sinnz+ E(f)sin2nz.  (8)

Let us recall that in the linear stability theory,
infinitesimal perturbations are the form

Y ~ sinzwrx.sinnz; 3 ~ cosmrx.sinnz

. )
1~ COSTrx.sinmz.
By substitution of (6)—(8) into the nonlinear equations
(1)-(4) we deduce the following set of ordinary non-
linear coupled differential equations for the five Fourier
time dependent coefficients

dA  Ra Ry

P = 2 _ DAk 402 2
é(r + )dt P nrB Pr D+ a*(r* +11A (10)
dB 2 20,2
Pr-5= —Pr.n*rAC—Pr.nrA—7n*(r‘+1)B (11)
dc A.B
= —4p? Pr.n?r——— 12
Pr m a*C+ Pr.n*r 3 (12)
dD 2 20,2
Sc—&= —Sen*rA . E+ScSrnrA—n*(r*+1)D
~r¥rt+1)B (13)
dE AD
Sc— = —4n’E—4n* ¥ . C+Sen*r—. (14)
dt 2
The algebraic equations for the steady state (dA4/dt =
dB/dt = ... = 0) can be solved for one of the coeffi-

cients, say 4. We get

422 42
A{<§> SAEPriat(r? +1)*r* + (—8—)

x [ —r*Sc?Ra+n*(r* + 1)*r}(Pr? + Sc*)]

Sc+P
+ [— (r + 1)r*Ra— Ry, &(r* + 1)r? ( c; r)

+n*(r? +1)4}} =0 (19)

and by back-substitution

B —8rPr. A (16)
T 8n(r2 + 1)+ nriPri4?
1
C=gPrr.A.B (17)
D=[Ra.r.B+m*¢* +1)*Pr. A)/Rp,.7v  (18)
Sc )
E=—r.A.D-%.C. (19)

8
The Nusselt number, horizontally averaged, (< >)
computed at the lower boundary (z = 0), is simply
<Nu>,.o=1-2nC
2Pr¥(4%/8)

ey



Hysteresis loop in the Bénard problem

We need here some results of the linear theory [2] in
order to rewrite equation (15).

rhic=1/2
(21

. Sc4 P
RaZ = Ra(°>_RT,,.5P.< cPr ')

where we have used the critical value for r and where
R4 is the critical Rayleigh number in the case of
“exchange of stabilities” (Ra'® being the usual Rayleigh
number, i.e. 27n*/4); using equagion (21), equation (15)
can be rearranged:

AZ 2 AZ
A. {<§—> Pr’Sc? . Ra® — <?>
P 2
x 38c? [Ra—Ra‘o’ (1 + —Z)]
Sc

—9(Ra —Raii“)} =0. (22

The solutions are

(23)

L /o 1 [ Ra 14 Pr\
A\ |4 Pr*| Ra® Sc?
Ra—RaS™\ 9
+ Ra® g Zoif 24

The question is to know if real positive values of
A? may exist below the critical point, thus if finite
amplitude instability exists (real 4).

Two cases must be considered:

(i) If & > 0, then equation (21) shows that

RaZ' < Ra'® (a destabilizing case)
and consequently, for
Ra < Ra%* < Ra®

no positive values for A* can be obtained from
equation(24),and the only solution is A = 0 correspond-
ing to the state of rest (Nu = 1).
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(i) If ¥ < 0, it was shown previously [2] that over-
stability prevails if

27n* Pr(Pr+1)
L > F* = —_—
| l 4 SCZRT).

For values of the dimensionless numbers compatible
with experiments in liquids (e.g. water—isopropanol [8])

F* ~ 1076

(25)

and experiments operate always beyond this value.
In that case, let us recall that

Rait: < Rag!

where Radl; is the critical Rayleigh number related to
overstability.
Thus the main question is not to know if steady

motijons may exist below RaZ™, itself greater than Ra‘®),

thus for Rd® < Ra < Ra%!
but rather, if finite amplitude instability arises in the
range "

g Ra"” < Ra < RaS,

i.e. below the first critical point encountered when the
temperature gradient is increased.

The solution for (42/8) was tabulated from equation
(24) in a wide range of Rayleigh numbers; the other
relevant parameters were kept constant, and equal to

Pr=10
Sc = 1000
Ry, = 40000
¥ = —10"2

and thus '
Ragye, = 102835 (see [2]).

From equation (20) the Nusselt number can be
computed. Figure 2 reproduces the Nusselt number vs
the Rayleigh number. Curve (a) corresponds to the
solution A = 0 of equation (22), i.e. the state of rest,
whereas curve (b) corresponds to nonzero real values
of A. We have indeed found three real solutions of
equation (22) for A if

Ra = 7604

thus clearly below the critical point.

Pr=10
Sc=1000
R, =40 000 (v)
S =-0Q0l
20
Nu 151 1 —— Stable
1 --~Unstabie
IS ?
-0 {a) 4 \\-‘_‘—J-:======- __________
crit crit
Rd(o) Rﬂ,u Rdov;v
6575 7604 10283 Ra
—+ e + +
500 1000 1500

Fi1G. 2. Hysteresis loop in the Nusselt—Rayleigh number
plane.
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In the notation Rara = 7604, the subscript “fa.”
means a Rayleigh at which finite amplitude instability
may exist,

Curve (b) cuts curve (a) at Ra = Ra%", which is a
bifurcation point. There is a striking analogy with
recent results of Nicolis and Auchmuty [20] in their
study of steady solutions of nonlinear equations de-
scribing a chemical network.

The next step is to test the stability of each
solution for 4 against infinitesimal disturbances around
a given steady state, solution of equations (15)-(19).
Equations (10)—(14) are linearized in the perturbations
J6A,0B...of 4,B....

The time dependence of each perturbation is then
given by e and we have then to find the eigenvalues
w of a 5x35 real matrix. If real {w} > 0 for at least
one eigenvalue, the steady state considered is unstable.
The stability of 4 = 0 (state of rest; curve (a) of Fig. 2)
was already studied in an earlier paper [2]. This solu-
tion is stable if Ra < Ratl, (in the present numerical
example if Ra < 1028-35). This is indicated in Fig. 2 by
a full line. When Ra > 102835, a perturbation with
r? = 4, grows exponentially with time (w is complex!),
and this is indicated in Fig. 2 by a dotted line (unstable
solution). The stability of each solution on curve (b) was
also tested. We have found that the part of curve (b)
with a negative slope was always unstable (lower
branch) and that the upper branch was stable. Thus if
Rag, < Ra < RaSt, two stable steady states are indeed
observed. The solution chosen by the system will
depend upon the initial conditions. The system of
equations {10)—~(14) is integrated numerically for diffe-
rent initial conditions. Table 1 summarizes the results
of the numerical integration. Our results clearly show
that multiple steady state are possible below the
critical point. Thus the existence of an hysteresis loop
has been numerically shown (paths indicated by
arrows).

This result must be compared with Schmidt-
Milverton plots for a two component system where,
below the critical temperature difference (or Rayleigh
number) multiple states (a state of rest and convective
states) were indeed observed (see Fig. 1).
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The variation of Rag. with & can also be given.
Indeed Ray, is the value of Ra which makes zero the
quantity under the square root sign in equation (24).
Thus

91 [ Ra 1+Pr2 2+ Ra—Ratit
4 Pr*| Ra™® Sc? Ra'®

9
2 __0 (2
" Sc2py? (26)

or using equation (21)
Rai, Pr\? Pr
—=1—-{=) 2|
Ra'® ! <SC> - <Sc>
RTh .S Pr -1

As already stated, and now shown by equation (27)
finite amplitude convection can only exist for & < 0.

Table 2 gives the three Rayleigh numbers of interest
for different & and Pr = 10; Sc = 1000; R4, = 40000
and shows that finite amplitude instability always exist
for ¥ < 0.

Table 2
Soret number R4St RaSitt, Rag,
—-1077 6579 664-7 6578
—107¢ 6615 664-8 6585
—1073 697-9 6651 6607
—1074 1061-5 6684 667-8
—1073 4697-5 701-1 690-0
-5x1073 20857-5 8466 730-3
—1072 41057-5 1028-4 7605
—2x1072 814575 13920 8032
—4x1072 1622575 21193 8636
—6x1072 243057-5 28466 909-9
—8x1072 3238575 3573-8 949-0
-1071 404657-5 4301-1 9834
CONCLUSION

An approximate nonlinear analysis shows that
multiple sieady state exist below the critical Rayleigh
number. Two of them are stable: the state of rest is
stable if the disturbances are sufficiently small but is
unstableif they are sufficiently large. The system evolves

Table 1
Ra Initial conditions Final state
Ra < 102835 State of rest (4=B=C=D=FE=0) State of rest
+small perturbation
(B=C=-10"9)
Nu(t = 0) = 1-000006 Nu(t - o) = 1-000000
Ra = 12575 State of rest + small perturbation  Steady convective state

(Ra > RaStit) Nu(t = 0) = 1-000006

Ra = 7675
 Ra=12575
Rag, < Ra< RaS¥, Nu(t = 0) = 1950

Final steady state obtained for

Integration performed for
0 <t < 3000 (time step: 107%)
t = 3000 ~ co
Nu(t = 3000) = 1950

New steady convective state
0<t<900~wx
Nu(t = 900) = 1-203
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towards a new steady convective state, even below the
critical point, and in turn this new steady state is
stable against infinitesimal disturbances. This situation
prevails for negative Soret coefficients. It seems thus
that we have explained one of the anomalous
behaviour of a multicomponent system heated from
below with a negative thermal diffusion factor. To our
knowledge, this applies to the following systems:
water-methanol; water—ethanol; water-isopropanol
(90 wt %, water); sea water; some electrolyte solutions.

Presently a complete numerical study using as much
as 120 Fourier coefficients is in progress.
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UN CYCLE D’'HYSTERESIS DANS LE PROBLEME DE BENARD A DEUX COMPOSANTS

Résumé—Une approximation de la théorie non-linéaire du probléme de Bénard a4 deux composants qui
tient compte de la diffusion thermique montre que des états stationnaires multiples stables sont possibles.
La stabilité de chaque ¢iat stationnaire est examinée. Les équations non-linéaires sont ensuite intégrées
numériquement. On observe un cycle d’hystérésis dans le plan nombre de Rayleigh-nombre de Nusselt.

HYSTERESE BEIM ZWEIKOMPONENTEN BENARD-PROBLEM

Zusammenfassung—Eine Naherungsisung der nichtlinearen Theorie des Zweikomponenten Bénard-

Problems unter Beriicksichtigung der Thermodiffusion zeigt, daB mehrfach stabile stetige Zustinde

moglich sind. Die Stabilitdt eines jeden stetigen Zustandes wurde untersucht. Die nichtlinearen

Gleichungen wurden numerisch integriert. Beim Auftragen der Rayleigh~Zahl iiber der Nusselt-Zahl
wurde eine Hysterese festgestellt.

TMETJISE TUCTEPE3UCA B JIBYXKOMITIOHEHTHOW 3AJJAYE BEHAPA

AmMoTauns — AMNNPOKCHMALIMA HETWHEHHONU TEOpHH ABYXKOMIIOHEHTHOM 3anauu benapa npu yuete

Tepmoandby3uH 110Ka3bIBAET, YTO BO3MOXKHO MHOXECTBO YCTOWYMBBIX CTALIMOHADHBIX COCTOSHHA.

HccnenyeTcsi yCTOMYHMBOCTbL KaXXOOTO CTALUMOHAPHOIO COCTOSHHSA. 3aTeM MPOBOAMTCS YHCIJIEHHOE

MHTErpupoBaHye HeluHeHHbIX ypaBHeHH#. Tletns IMuctepesnca nabiiomaeTcs B MIIOCKOCTH YHCIIO
Peites — uncno Hyccenbra.



