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Abstract-An approximation to the nonlinear theory of the two component Btnard problem, taking 
into account thermal diffusion, shows that multiple stable steady states are possible. The stability of each 
steady state is investigated. The nonlinear equations are then integrated numerically. An hysteresis loop 

in the Rayleigh number-Nusselt number plane is observed. 

NOMENCLATURE 

Fourier coefficients; 

isothermal diffusion coefficient; 
thermal diffusion coefficient; 
depth of the liquid layer; 
acceleration due to gravity; 
mass fraction of component i; 
initial mass fraction of component i; 
Nusselt number; 
perturbation of N; 
Prandtl number; 
Rayleigh number; 
Rayleigh number for the concentration field; 
wavenumber in the horizontal direction; 
Schmidt number; 
Soret number; 
temperature; 
time; 
space coordinate. 

Greek symbols 

thermal expansion coefficient; 

P-%WWT; 
thermal diffusivity; 
kinematic viscosity; 
density; 
temperature perturbation; 
stream function; 
vorticity. 

1. INTRODUCTION 

THIS paper considers the problem of a two fluid mixture 
confined between slippery horizontal walls which are 
heated from below. The system is initially homogeneous 
in composition, but, owing to the imposed temperature 
gradient, a mass fraction distribution is established in 
the liquid layer; this is the so-called Soret effect. 

Several theoretical papers are devoted to the linear 
stability analysis [l-9]. The aim of the linear stability 
analysis, is to give the variation of the critical Rayleigh 

number as a function of a parameter, describing the 
influence of thermal diffusion. This parameter is called 
the Soret number. The main result is that for negative 
Soret numbers (i.e. when the denser component 
migrates towards the hot plate, here the lower 
boundary), the critical Rayleigh number increases: this 
is a stabilizing effect. A destabilizing effect is observed 
for positive Soret numbers when the denser component 
migrates towards the upper cold boundary. It was also 
found that under certain circumstances, the principle 
of exchange of stabilities was violated and that in- 
stability arises as oscillations of increasing amplitude 
(overstability). 

Several papers were also devoted to an experimental 
investigation of the same problem [3,4,8,1&15]. In 
most of these papers, Schmidt-Milverton plots [ 161 are 
presented for an initially homogeneous two component 
system. Anamalous heating curves for negative Soret 
numbers are obtained showing a negative slope in a 
certain region (AT decreases when the heating power 
increases). 

The situation is represented in Fig. 1. The main 
subject of this paper is to explain finite amplitude 
convection below the critical temperature gradient. 

v 
Heat power 

FIG. 1. Schmidt-Milverton plots for a 
two component system with negative 

thermal diffusion factor. 
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Referring to Fig. 1, if the Rayleigh number (or AT) is 
increased beyond its critical value, there is a sudden 
jump in the Nusselt number, indicated by arrow (a). 
If the Rayleigh number is now decreased from its 
maximum value, convection states extend below the 
critical AT. At a critical temperature gradient called 
ATr8., there is a jump back to the conduction regime 
(Nu = 1). This hysteresis loop can only be explained in 
the framework of a nonlinear theory. In order to obtain 
approximate solutions to the nonlinear equations with 
free boundary conditions, a truncated Fourier develop- 
ment is used. This method is described in an earlier 
work by Veronis [ 17,181 and by Foster [ 191 on Benard 
type problems. 

3. AN APPROXIMATE SOLUTION 

Once convection has set in, the mean temperature 
and concentration field are distorted by the convective 
motions. Following Veronis [ 17,l S] the minimal repre- 
sentation which takes account of the finite amplitude 
motion is 

e(x, I, f) = A(t) sin 7rrx. sin 7rz (6) 

9(x, 2, t) = B(t) cos 7rrx. sinrcz + C(t) sin2nz (7) 

n(x, 2, t) = D(t)cos 7crx. sinnz+ E(t)sin2nz. (8) 

Let us recall that in the linear stability theory, 
infinitesimal perturbations are the form 

II/ -sinrrrx.sinrrz; 9 _ cosnrx.sinaz 

n N cos nrx . sin nz. (9) 

2. THE NONLINEAR EQUATIONS 
By substitution of (6)-(8) into the nonlinear equations 

For an incompressible fluid, the conservation equa- 
(l)-(4) we deduce the following set of ordinary non- 

tions are 
linear coupled differential equations for the five Fourier 
time dependent coefficients 

y TF!f+zn+y a29 
‘ax ax; . ax; (l) -7cz(r2+l)~=~mB-~nrD+n4(rz+1)zA (10) 

a$ a($,41 Ra as R,,, an a2fp 
-=--zx+Prz+dx? dt 8(x, Z) 

(2) Prg = -Pr.n’rAC-Pr.mA--7c2(r2+1)B 
J 

(3) 
Prg= -4n2C+Pr.n2r$jf 

(4) 
Sc$= -Sm2rA.E+ScYnrA-n2(r2+1)D 

- Yn2(r2 + 1)B 

Sc f = -4x2E-4~~9. C+Scn’rT. 

(11) 

(12) 

(13) 

(14) with 

wd af ag af ag 
a(x,y)=z’ay-ay’ax’ The algebraic equations for the steady state (dA/dt = 

dB/dt = . . . = 0) can be solved for one of the coeffi- 
In these equations, Ic/ is the stream function, 9 and n cients, say A. We get 

respectively the contribution of the convective state to 
the temperature field T and the mass fraction distribu- A 
tion N. Thus 

T(x, z, t) = T(z) + 9(x, z, t) 

N(x, z, t) = X(z) + n(x, z, t) (5) 

ikz,t) = O+$(x,z,t) 

with 

T(z) = l-z and m(z) = 1 +y(z-i)). 

All the variables are expressed in a dimensionless form. 
The notation is that adopted in the papers by Platten 
and Legros (e.g. 6) 

Pr = Prandtl number = V/K 
SC = Schmidt number = v/D 

(D : isothermal diffusion coefficient) 
Ra = Rayleigh number = guATd3/w 
RTh : thermal diffusion Rayleigh number 

= gyN:d3/Kv 

1 ap 
‘=p aN1 T 

i > 

Sc2Pr27c4(r2 + 1)‘r4 + $ 
0 

x [ - r4Sc2Ra + n4(r2 + l)%‘(Pr’ + SC’)] 

+ - (r2 + l)r’Ra- RTh.Y(r2 + l)r2 

and by back-substitution 

-8rPr.A 
B= 

8n(r2 + 1) + nr2Pr2A2 
(16) 

C=aPr.r.A.B (17) 

D= [Ra.r.B+n3(r2+1)‘Pr.A]/RTh.r (18) 

E=Fr.A.D-Y.C. (19) 

The Nusselt number, horizontally averaged, (< >) 
computed at the lower boundary (z = 0), is simply 

<Nu>,=,, = 1-27~~ 

,Y: the Soret number = @Y/D). AT 
(D’: thermal diffusion coefficient). 

1 + 2Pr2(A2/8) 

3 +Prz(A2/8) (20) 
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We need here some results of the linear theory [2] in 
order to rewrite equation (15). 

&it = l/2 
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(ii) If Y < 0, it was shown previously [2] that over- 
stability prevails if 

Rap’ = Ra(‘) - R,, . 9 . 
(21) 

where we have used the critical value for r and where 
Ra:;“’ is the critical Rayleigh number in the case of 
“exchangeof stabilities” (Ra(‘) being the usual Rayleigh 
number, i.e. 27n4/4); using equation (21), equation (15) 
can be rearranged: 

A 

. Pr2Sc2. Ra”’ - 4 
0 

x 3Sc’[Ra-Ra’O’(1 +$)] 

-9(Ra-Ra$) = 0. (22) 

The solutions are 

A=0 (23) 

+ r;a;$). A}. (24) 

The question is to know if real positive values of 
A2 may exist below the critical point, thus if finite 
amplitude instability exists (real A). 

Two cases must be considered : 
(i) If Y > 0, then equation (21) shows that 

RaSP < Rat’) (a destabilizing case) 

and consequently, for 

Ra < Ra$ < Ra(‘) 

no positive values for A2 can be obtained from 
equation(24),and theonly solution is A = Ocorrespond- 
ing to the state of rest (Nu = 1). 

PI=10 

IcyI > y* =zgp;cyR+l). (25) 
Th 

For values of the dimensionless numbers compatible 
with experiments in liquids (e.g. water-isopropanol [8]) 

y* 2 10-6 

and experiments operate always beyond this value. 
In that case, let us recall that 

Ra$ < Ra$” 

where Ra!& is the critical Rayleigh number related to 
overstability. 

Thus the main question is not to know if steady 
motions may exist below Ra$, itself greater than Rat’! 
thus for Rat’) < Ra < Raz:’ 

but rather, if finite amplitude instability arises in the 
range 

Rat’) < Ra < RaCr” cwer 

i.e. below the first critical point encountered when the 
temperature gradient is increased. 

The solution for (A2/8) was tabulated from equation 
(24) in a wide range of Rayleigh numbers; the other 
relevant parameters were kept constant, and equal to 

Pr = 10 

Sc=lOOO 

R,, = 40000 
y= -10-2 

and thus 
Rag:, = 1028.35 (see [2]). 

From equation (20) the Nusselt number can be 
computed. Figure 2 reproduces the Nusselt number vs 
the Rayleigh number. Curve (a) corresponds to the 
solution A = 0 of equation (22), i.e. the state of rest, 
whereas curve (b) corresponds to nonzero real values 
of A. We have indeed found three real solutions of 
equation (22) for A if 

Ra > 760.4 

thus clearly below the critical point. 

Nu IS- - Stabb 
--ihtabk 

I.0 
(a) 

%iY /ib,, r?cP we, 
6575 ,604 ,028 3 Ra 

500 Do0 Isoo 

FIG. 2. Hysteresis loop in the Nusselt-Rayleigh number 
plane. 
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In the notation Rata. = 760.4, the subscript “Ea.” 
means a Rayleigh at which finite amplitude instability 
may exist. 

Curve (b) cuts curve (a) at Ra = Ra$‘, which is a 
bifurcation point. There is a striking analogy with 
recent results of Nicolis and Auchmuty [20] in their 
study of steady solutions of nonlinear equations de- 
scribing a chemical network. 

The variation of Rata with Y can also be given. 
Indeed Rala. is the value of Ra which makes zero the 
quantity under the square root sign in equation (24). 
Thus 

The next step is to test the stability of each 
solution for A against infinitesimal disturbances around 
a given steady state, solution of equations (15)-(19). 
Equations (lo)-(14) are linearized in the perturbations 
6A,GB...ofA,B . . . . 

or using equation (21) 

The time dependence of each perturbation is then 
given by ecti and we have then to find the eigenvalues 
w of a 5 x 5 real matrix. If real {w} > 0 for at least 
one eigenvalue, the steady state considered is unstable. 
The stability of A = 0 (state of rest; curve (a) of Fig. 2) 
was already studied in an earlier paper [2]. This solu- 
tion is stable if Ra < RaTi:, (in the present numerical 
example if Ra < 1028.35). This is indicated in Fig. 2 by 
a full line. When Ra > 1028.35, a perturbation with 
r2 = +, grows exponentially with time (w is complex!), 
and this is indicated in Fig. 2 by a dotted line (unstable 
solution). The stability ofeach solution on curve (b) was 
also tested. We have found that the part of curve (b) 
with a negative slope was always unstable (lower 
branch) and that the upper branch was stable. Thus if 

cr” 

As already stated, and now shown by equation (27) 
finite amplitude convection can only exist for .Y’ < 0. 

Table 2 gives the three Rayleigh numbers of interest 
for different Y and Pr = 10; SC = 1000; RTh = 40000 
and shows that finite amplitude instability always exist 
for Y < 0. 

Soret number 

Rar, <: Ra < Raover, two stable steady states are indeed 
observed. The solution chosen by the system will 
depend upon the initial conditions. The system of 
equations (lo)-(14) is integrated numerically for diffe- 
rent initial conditions. Table 1 summarizes the results 
of the numerical integration. Our results clearly show 
that multiple steady state are possible below the 
critical point. Thus the existence of an hysteresis loop 
has been numerically shown (paths indicated by 
arrows). 

- 1o-5 
- 1o-4 
-10-S 
-5x 10-j 
-1o-2 
-2 x 1o-2 
-4 x 1o-2 
-6x 1O-2 
-8 x lo-* 
-IO-’ 

This result must be compared with Schmidt- 
Milverton plots for a two component system where, 
below the critical temperature difference (or Rayleigh 
number) multiple states (a state of rest and convective 
states) were indeed observed (see Fig. 1). 

An approximate nonlinear analysis shows that 
multiple steady state exist below the critical Rayleigh 
number. Two of them are stable: the state of rest is 
stable if the disturbances are sufficiently small but is 
unstable if they are sufficiently large. The system evolves 

Table 1 

x ~ = 0 (26) 
Sc2Pr2 

Table 2 

Rag:’ Iha 

657.9 664.7 657.8 
.661.5 664.8 658.5 
697.9 665.1 660.7 

1061.5 668.4 667.8 
4697.5 701.1 690.0 

20857.5 846.6 730.3 
41057.5 1028.4 760.5 
81457.5 1392.0 803.2 

162257.5 2119.3 863.6 
243057.5 2846.6 909.9 
323857.5 3573.8 949.0 
404657.5 4301.1 983.4 

CONCLUSION 

Ra 

Ra < 1028.35 

Initial conditions 

Stateofrest(A=B=C=D=E=O) 
fsmall perturbation 
(B=C= -10-6) 
Nu(t = 0) = 1~000006 

Ra = 1257.,5 State of rest +small perturbation 
(Ra > Raz&) Nu(t = 0) = 10IOOO6 

Ra = 767.5 Final steady state obtained for New steady convective state 
Ra = 12575 o<t<900-cc 

Rat,. c Ra < Raover =Ii’ Nu(t = 0) = 1.950 Nu(r = 900) = 1.203 

Final state 

State of rest 

Nu(t + to) = 1~000000 

Steady convective state 
Integration performed for 

0 < t < 3000 (time step: 10-2) 
t=30OO=co 
Nu(t = 3000) = 1,950 
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towards a new steady convective state, even below the 
critical point, and in turn this new steady state is 
stable against infinitesimal disturbances. This situation 
prevails for negative Soret coefficients. It seems thus 
that we have explained one of the anomalous 
behaviour of a multicomponent system heated from 
below with a negative thermal diffusion factor. To our 
knowledge, this applies to the following systems: 
water-methanol; waterethanol; water-isopropanol 
(90 wt % water); sea water; some electrolyte solutions. 

Presently a complete numerical study using as much 
as 120 Fourier coefficients is in progress. 
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UN CYCLE D’HYSTERESIS DANS LE PROBLEME DE BENARD A DEUX COMPOSANTS 

Rbumi-Une approximation de la theorie non-lin&.ire du probleme de Benard h deux composants qui 
tient compte de la diffusion thermique montre que des etats stationnaires multiples stables sont possibles. 
La stabilite de chaque trat stationnaire est examit&. Les equations non-lintaires sont ensuite integrees 
numeriquement. On observe un cycle d’hysttresis dans le plan nombre de Rayleigh-nombre de Nusselt. 

HYSTERESE BEIM ZWEIKOMPONENTEN BENARD-PROBLEM 

Zusammenfassung-Eine Niiherungslosung der nichtlinearen Theorie des Zweikomponenten Binard- 
Problems unter Beriicksichtigung der Thermodiffusion zeigt, dag mehrfach stabile stetige Zustande 
miiglich sind. Die Stabilitat eines jeden stetigen Zustandes wurde untersucht. Die nichtlinearen 
Gleichungen wurden numerisch integriert. Beim Auftragen der Rayleigh-Zahl fiber der Nusselt-Zahl 

wurde eine Hysterese festgestellt. 

IIETJDI I-MCTEPE3HCA B ABYXKOMHOHEHTHOI? 3AAAYE GEHAPA 

hEIOTB,,HR - hnpOKCUMaLWi HeJIAHeiiHOfi T‘ZOpAU AByXKOMIlOHeHTHOk 3aJW,U I;eHapi, Ilpl.3 ,WZTe 
Te,,MOAH@$Y3HA llOKa3bIBaeT, 'IT0 B03MOmHO MHOXECTESO )'CTOiiWBblX CTNIAOHaPHblX COCTORHWti. 

&'kCJI‘ZAyeTCR yCTO&HBOCTb KtUKAOrO CTaUUOHaPHOrO COCTORHliII. 3aTeM ItpOBOAkiTCn WiCJleHHOe 

HHTerpiSpOBaHkie HeJIAH&HblX )'paBHeHHfi. neTJlSI hCTept23HCa Ha6JROAaeTCn B IIJIOCKOCTA YHCJIO 

hIen -~rrlcno HyCCeJIbTa. 


